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Abstract Rate and size-dependent properties dominate the
mechanical behavior of polymeric thin films used in a vari-
ety of applications related to generation, transmission and
storage of energy. In this paper, molecular dynamics (MD)
simulations of polystyrene thin films are used to develop
a size and rate dependent finite deformation elastic–plastic
constitutive relations. Different modes of deformation are
considered in the MD model, and results of simulations are
homogenized to yield parametric representations of the con-
stitutive model. The hyperelastic behavior is represented by a
modified Ogden type model for films of different thicknesses
at different strain rates. The MD simulations suggesting a
rate-dependent yield strength is developed for a perfect plas-
ticity model with mitigated size effects. The softer material
properties of thin films are found to be the consequence of a
large surface layer, which has a low density with high local
chain mobility.
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1 Introduction

Polymers are increasingly being used in numerous renew-
able energy applications for generation, transmission and
storage of energy. Such applications include photovoltaic
module components, battery and fuel cell membranes, insu-
lation for electrical wires and cables, wind turbine blades
etc. Even at the nanoscale, emerging polymeric devices have
shown tremendous potential in various applications. This has
led to wide-spread research for understanding mechanisms
that govern their properties at the nanoscale [1]. Amongst
polymers, polystyrene (PS) thin films are widely studied,
primarily for their abundant applications and available exper-
imental data. For example, the use of extruded PS fiberglass
and foam in domestic and commercial insulation has been
proven to have enormous benefits in energy conservation.
Polystyrene sheets of 10–100 nm thickness are also used for
coating, in the encapsulation of nano-powders to enhance
the chemical stability of ultra-fine energetic materials. It is
important to understand the properties of PS thin films at the
nanoscale. Various anomalous properties have been observed
for the thin films with thickness below 100 nanometers, such
as lower density, larger free volume and reduced glass transi-
tion temperature Tg [2–5]. These size dependent anomalous
properties are believed to come from the effect of config-
urational constraints at the surface and interface [2,3,6–8].
With respect to mechanical properties, several experiments
[9,10] and simulations [11,12] have shown that properties of
thin films deviate from bulk as the thickness decreases below
30 or 40 nm. Rate dependence is a well known mechanical
property for polymer materials and is believed to be also
important for PS thin films [3,12]. However, there is a pau-
city of appropriate size and rate dependent constitutive laws
that govern the behavior of thin films, especially with respect
to variation along the thickness direction.
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Among various experimental techniques, nanoindentation
is widely used to measure mechanical properties of micro-
and nano-structures [9,13–15]. However, this technique is
not able to accurately determine size dependence for thin
films due to strong far field effects from the substrate and the
indenter [9,16]. Recently, a nanoparticle embedding method
[17–19] has been developed to investigate the surface layer
properties of polymer thin films. In this method, gold par-
ticles are placed on polymer thin films and the specimens
are annealed at pre-specified temperatures. The embedding
depths are tracked during the process using atomic force
microscopy (AFM). The final embedding depth is found to be
larger on thinner films at temperatures below Tg [19]. In the
explanation of these experiment results, there is considerable
disagreement on whether a liquid like layer exists near the
surface [20,21]. Another technique is to utilize wrinkling
instability of thin films, bonded to a compliant substrate,
and deduce the film modulus from the wrinkle wavelength
[10,22]. Deviation of the modulus from bulk was reported for
thin films with thicknesses below 40 nm. Since these exper-
iments can only be carried out on the substrate-supporting
specimens, the surface effect and the substrate effect cannot
be determined separately [7,9]. Thus obtaining material con-
stitutive laws for very thin polymer films from experiments
data is a considerable challenge.

Computer simulation based studies, on the other hand,
can be useful in understanding the mechanical property of
polymeric thin films. However, finite element method (FEM)
suffers from a lack of appropriate size-dependent continuum
constitutive laws for modeling polymeric nanostructures.
Inverse methods like genetic algorithms or gradient-based
optimization [23] that use macroscopic experimental data to
get continuum constitutive parameters often result in non-
robust constitutive laws. Therefore, methods of bottom-up
homogenization [24] using simulations at lower scales, such
as molecular dynamics (MD) simulations are desirable in
this respect. However, direct MD simulations of thin films
undergoing the nanoindentation or nanoparticle embedding
process face considerable difficulty due to the small time and
spatial scales. The radius of the indenter tip in nanoindenta-
tion and the embedded particles in embedding experiments
are of the order of 10 nm, while the thickness of the PS thin
films is in the tens of nanometers. Correspondingly, the MD
simulation box needs to cover at least one million united
atoms in the explicit polymer chain structure to capture the
experimental domains of these thin films. Accounting for
the long relaxation times of PS molecules exceeds the fea-
sible computational scales and capability of currently avail-
able computer resources. A more feasible approach is to use
bottom-up homogenization, based on MD simulations of
representative molecular domains undergoing simple defor-
mation processes, to develop size-dependent constitutive laws.
The size-dependent and rate-dependent constitutive models

may subsequently be used to carry out continuum FE analysis
of the nanostructures and thin films.

There is a considerable body of literature that has used
MD simulations to investigate the mechanical properties of
polymers for both bulk and nanostructures. Some of these
works have investigated the elastic behavior, yielding and
hardening of bulk PS under different pressure, thermal his-
tory, and deformation modes using a coarse grained model
[25–27]. Simoes et al. [28] have investigated the viscoelastic
properties of glassy polymers using a bead spring model. van
Workum and de Pablo [29] have calculated the modulus of
nano-scale cantilever plates by exerting deflection or com-
pression deformation to the cantilever and using the strain
fluctuations method. All of these approaches have shown
lower Young’s modulus as the structure size decreases.
Yoshimoto et al. [12] have simulated the oscillations of free-
standing polymer films to investigate the local dynamic
mechanical properties using a bead spring model. Their cal-
culations indicate a melt-like region near the free surface
by comparing the storage modulus and the loss modulus.
Although these efforts have provided valuable insight into
the deformation mechanisms at the atomic level and revealed
size-dependence of mechanical properties, satisfactory con-
stitutive laws are not well established. Thus quantitative con-
struction of size-dependent constitutive laws is an important
task for continuum modeling of nanostructures.

The present work is aimed at the development of a size and
rate dependent constitutive law of PS or PS thin films from
MD simulations of deformation. Details on the MD simula-
tion model are given in Sect. 2. A constitutive law is proposed
in Sect. 3, for which, parameters are calibrated from simula-
tion data of molecular systems with different sizes, configu-
rations and loading conditions to investigate the size and rate
dependence. Discussions on the size-dependence are given
in Sect. 4.

2 Molecular dynamics model of the polystyrene system

2.1 Inter-atomic potentials

The MD model developed for PS in this analysis is based
on prior work by Ghosh et al. [30–32]. The MD simulations
are conducted with the general-purpose molecular simulation
package LAMMPS [33] that employs an efficient domain
decomposition parallelization strategy. The simulations use
the leapfrog Verlet and velocity Verlet time integration algo-
rithms for integrating the Newton’s equations for motion of
the system subject to molecular mechanics force fields. The
molecular force field for PS consists of intra-molecular or
bonded, and intermolecular or non-bonded interactions. A
united-atom representation, discussed in [31,32], is applied
to the PS chain model. The Transferable Potentials for Phase
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Equilibria (TraPPE) potential functions [34,35] are used to
model the interactions between the united atoms, specifically
using a harmonic bond potential as proposed in Han and Boyd
[36]. The corresponding total potential energy is expressed
as:

U = 1

2
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2 + 1

2
kθ (θ − θ0)

2

+1

2
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Terms on the right hand side correspond to stretch, angle,
dihedral and improper bonded energy, and the Lennard–Jones
(LJ) non-bonded energy functions, respectively. Values of the
parameters have been given in [31,32]. A cut-off radius rco

of 12 Å [31] is used for the non-bonded interactions.

2.2 Generating computational specimens

A series of free-standing film computational models of PS
with varying thicknesses are generated as shown in Fig. 1.
For thin film representation, periodic boundary conditions
are imposed in the horizontal direction, while finite bound-
ary conditions are imposed in the vertical direction. All mol-
ecules in these specimens are mono-dispersed atactic PS
chains with 200 monomers per chain. This yields a molec-
ular weight of MW = 21 k. The initial configuration is gen-
erated using the augmented phantom chain growth or PCG

Fig. 1 (a) Initial configuration of simulation system for a PS film of
thickness 12.3 nm, and (b) schematic representation of a single mono-
mer in the united-atom model. Bold line and dashed lines indicate the
positions of the walls before and after deformation

scheme discussed in [31]. An additional criterion that chains
along the non-periodic direction are within a pre-estimated
bound is imposed. The chain positions are estimated accord-
ing to the system size. The initial simulation box has a fixed
cross-section of 8 nm×8 nm, while the height or thickness is
varied for different specimens with different number of PS
molecules.

After the polymer chain creation, the system is relaxed
to push apart physically unrealistic entanglements or over-
lapped atoms to prevent the system configuration from blow-
ing up. Two methods can be used for this purpose. One is to
apply a soft potential as E(r) = A[1 + cos(πr/rc)] r < rc

instead of the L–J potential for the non-bonded interactions.
The other is to perform constant NVE simulation with a limit
on the maximum distance an atom can move in each time step.
Both methods are tested and found to render configurations
of similar densities after further relaxation. The NVE simula-
tion-based latter method is subsequently used for all simula-
tions. The limiting distance ranges from 0.0001 to 0.001 nm
and the time step from 0.01 to 1 fs, for a total of 300,000
time steps. For comparing results, a bulk simulation speci-
men containing 8 PS molecules with 320 monomers per mol-
ecule is also prepared. The simulation specimen is generated
and dynamically relaxed in a manner similar to the film speci-
mens, except for the fact that all boundaries are periodic. This
bulk PS system has been the subject of rigorous validation in
[31,32].

2.3 Boundary conditions and deformation simulations

The thin film computational specimens are subsequently
annealed at 600 K for a period of 0.5 ns and cooled to 300 K
over another 0.5 ns in Nose-Hoover style NVT ensemble with
a relaxation time of τT = 100 fs. After that the system is
relaxed in Nose-Hoover style NPT ensemble at a tempera-
ture of 300 K and pressure of 1 atmosphere, with a relaxation
time of the thermostat as τT = 100 fs and that for the baro-
stat as τP = 200 fs. For maintaining the film configurations,
only the stress components in the horizontal directions of the
film cross-section i.e. σxx and σyy should be controlled by
the barostat. The stress component along the thickness direc-
tions σzz is self-equilibrated due to free boundary conditions
on the surfaces.

Three types of loading in the form of deformation histo-
ries are simulated for developing the continuum constitutive
model for PS thin films. These are:

• Loading type 1: Uniaxial straining with lateral displace-
ment constraints by applying strain in the z-(thickness)
direction, while the lateral directions (x and y) are held
fixed. This is expressed in terms of the stretch ratios in
the three directions as: λz �= 1 and λx = λy = 1;
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• Loading type 2: Uniaxial straining with lateral applied
traction by applying strain in the z-(thickness) direction,
i.e. λz �= 1 while keeping the traction on the lateral sur-
faces at a constant of 1 atmosphere;

• Loading type 3: Tri-axial deformation by applying strains
in all three directions, expressed in terms of the stretch
ratios as λx = λy = λz �= 1.

The three loading types are significant with respect to deter-
mination of the continuum constitutive model, and can be
readily implemented in the LAMMPS code. Loading type 2
is consistent with the widely studied uniaxial material load-
ing tests, e.g. in [27,28] and can provide validation of the
model by comparison with experimental data. This loading
is also significant for investigating the deviatoric deforma-
tion behavior of polymeric materials, which is dominant for
incompressible or near incompressible materials. The load-
ing type 3 corresponds to hydrostatic deformation and can be
used to investigate the dilatation deformation behavior. Load-
ing type 1 involves both deviatoric and dilatation components
of deformation and can be used to validate the constitutive
model after parameters have been calibrated from the results
of loading types 2 and 3.

The film deformation in the thickness direction is con-
trolled by adding two rigid walls at the top and bottom of
the film. These walls are simultaneously moved at a constant
velocity to provide the necessary thickness deformation. The
interactions between the wall and the PS atoms are given by
a potential function:

Uwall(r) = 4εb[(σb/r)12 − (σb/r)6] (2)

where r is the distance between the atom and the wall. The
L–J cutoff radius is set to rc = 21/6σb for only including
the repulsive force. Various values have been tested for the
parameters εb and σb without any marked difference in the
results. Thus the values are chosen as εb = 0.0005 and σb =
3.0 respectively. To begin the deformation process, the repul-
sive walls are placed beyond the interaction range of the film
atoms and moved towards the film center until the forces on
the walls are no longer zero. This defines the initial positions
of the walls. The film thickness is measured as the distance
between the two walls. Deformations in the other directions
for the thin film models or for the bulk model are realized
by extending or shrinking the simulation boxes in the cor-
responding directions. The Nose-Hoover NVT ensemble is
used for simulating the loading types 1 and 3. For the loading
type 2, the Nose-Hoover NPT ensemble is applied to control
the stress components in the transverse directions. Since only
the compressive deformation can be exerted by the rigid wall
method, all simulations in this paper are for compression, i.e.
λz < 0.

In post-processing the MD simulation results for the con-
tinuum stress–strain relations, the averaged virial stress over
the current entire simulation specimen is denoted as the Cau-
chy stress σ . This stress involves both the kinetic energy
and the interaction between atoms and can be related to the
external loading on the film. While there is some contro-
versy on whether the mechanical stress should correspond to
the virial stress [37,38] or it should only involve the atomic
interactions [39], the former is considered more appropri-
ate with the MD based simulations in this work. The calcu-
lated virial stress in the z direction matches the stress cal-
culated from the force on the repulsive atomic walls at the
thin film surface very well. The stretch in the film thickness
direction is calculated as λz = Ht/H0, where H0 and Ht

are respectively the initial and current distances between the
walls that compress the films. For the x- and y-directions
with periodic boundary conditions, the stretch is calculated
as λα = Lt/L0, α = x, y, where L0 and Lt are respectively
the initial and current simulation box lengths in that direc-
tion. The engineering strain and the logarithmic strain along z
direction are then calculated as ezz = λz −1 and εzz = ln λz ,
respectively.

3 Calibrating size and rate-dependent constitutive
parameters

Parameters in the continuum constitutive law are derived
from homogenized solutions of a sequence of MD simu-
lations for each simulation specimen. All simulations are
carried out at 300 K with relaxation constants τT = 100
and τP = 200 fs respectively. Unless otherwise specified,
the equations of motion are integrated with a time step of
2 fs and the engineering strain rate of the applied straining is
1 × 108 s−1.

3.1 Validation studies for a bulk specimen

Results of the MD simulation are first compared with those
presented by Vorselaars et al. [27] for the uniaxial straining
with lateral stresses for the load type 2 on a bulk specimen. A
different united-atom MD model has been used by Vorselaars
et al. [27].

The changes in stress, density, internal energy and exter-
nal work during the deformation are plotted as a function
of strain in Figs. 2, 3 and 4, and are compared with results
in the literature. Good agreement between the present MD
simulation results and those in [27] is taken as a validation
of the present model. As a matter of fact, comparison of
density profiles in Fig. 3 shows that the results of this anal-
ysis agrees better with experimental values [40] than those
in [27].
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Fig. 2 Stress–logarithmic strain response by MD simulation results
compared with that by Vorselaars et al. [27]

Fig. 3 Comparison of density as a function of engineering strain by
MD simulation with that by Vorselaars et al. [27], as well as with the
experiment value for un-deformed bulk [40]

Fig. 4 Comparison of internal energy change and external work as a
function of engineering strain response by MD simulation with that by
Vorselaars et al. [27]

3.2 Constitutive parameters

3.2.1 A framework of elastic–plastic constitutive
law for finite deformation

Since the deformation of polymeric materials usually
involves large strains, an elasto-plastic finite deformation
model proposed by Moran et al. [41] is applied to establish
the size and rate dependent constitutive law. In this model,
the deformation gradient F is decomposed into an elastic part
and a plastic part as:

F = Fe · Fp (3)

The plastic part of the deformation gradient maps the mate-
rial line element in the undeformed configuration dX to that
in the intermediate configuration dX̄ as dX̄ = Fp · dX. The
elastic deformation gradient maps the material line element
dX̄ to that in the deformed configuration dx as: dx = Fe ·dX̄.
The Green strain and its elastic and plastic corresponding
parts are defined as

E = 1

2
(C − 1),Ep = 1

2
(Cp − 1), Ēe = 1

2
(C̄e − 1) (4)

where C = FT · F is the right Cauchy–Green tensor and
Cp = FpT · Fp, C̄e = FeT · Fe are its corresponding plastic
and elastic parts, respectively. Moran et al. [41] have estab-
lished their constitutive law in the intermediate configuration.
The stress in this formulation is expressed as:

T̄ = ∂W (Ēe, θ)

∂Ēe
(5)

where W (Ēe, θ) is the Helmholtz free energy per unit vol-
ume, usually referred to as the strain energy density, and θ is

temperature. T̄ =
(−1

Fe
−1
Fe

)
∗∗(J eσ ) is the second Piola-Kirc-

hoff stress in the intermediate configuration, J e = det(Fe)

corresponds to the local volume change ratio during elas-
tic deformation. Assuming that plastic deformation does not
alter the local density as verified in Sect. 3.2.3, J e corre-
sponds to the local volume change, i.e. J = J e = det(F).
Under isothermal conditions, the relation between ˙̄T and ˙̄Ee

can be deduced as

˙̄T = D̄e : ˙̄Ee (6)

with D̄e = ∂2W
(
Ēe,θ

)

∂Ēe∂Ēe as the elasticity tensor. For plastic

deformation, the yield surface is defined as�
(
T̄, C̄e, ξ̄

) = 0,
where ξ̄ is a set of internal variables. Their evolution is
governed by the hardening laws of the form ˙̄ξα = ˙̄ε p Hα(
T̄, C̄e, ξ̄

)
, α=1, 2, . . . , n. Here ˙̄ε p is the rate of effective

plastic strain in the intermediate configuration. Assuming
associative flow rule, the plastic flow is written as
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˙̄Ep = ˙̄ε p ∂�(T̄, C̄e, ξ̄ )

∂T̄
(7)

The parameter ˙̄ε p can be determined from the consistency
conditions given in the Appendix Eq. (A1). The stress–strain
relation is expressed as

˙̄T = D̄ep : ˙̄E (8)

where, D̄ep is the elastic–plastic tangent tensor. Equation (8)
can be written in the deformed configuration with a transfor-
mation as

τ (∗) = Dep : d (9)

where τ (∗) is an objective rate of Kirchhoff stress τ = Jσ ,
d is the rate of deformation tensor, Dep is the elastic–plastic
tangent tensor in the deformed configuration. Details on the
derivation and expression for D̄ep are given in Appendix A.

The explicit functions and constitutive parameters are gen-
erated from MD simulation results for the polymeric thin
films in the following sections, respectively for the elastic
part and plastic part of the above constitutive law. The con-
stitutive law is aimed to investigate the size and rate depen-
dence, which are assumed to be reflected in the calibrated
constitutive parameters.

3.2.2 Hyperelastic constitutive law for the polymeric
thin film

The elastic part of the finite deformation behavior of PS thin
films is represented by a hyperelastic constitutive model for
polymers. Hyperelastic models in the literature [42] are clas-
sified into two categories, (i) represented by a polynomial
form of the energy function [43], such as the neo-Hookean
model, Mooney-Rivlin model or the Arruda–Boyce 8-chain
model [44], and (ii) represented by a power law, such as the
Ogden model [45] and its variations [46,47]. In the present
work, the framework of the Ogden model [46] is used to
represent the continuum hyperelastic constitutive law. The
constitutive parameters in this model are assumed to be gov-
erned by the Hill-Mandel principle of macro-homogeneity
and are generated by homogenizing results of MD simula-
tions of the polymeric chain ensemble. The strain energy
function for the power law function, which is adaptable to a
variety of nonlinear stress–strain relations, is expressed as:

W=
N∑

p=1

ap

αp

(
3∑

i=1

λ̂
αp
i −3

)
+ K

m2 (m ln J+J−m − 1) (10)

where λi , i = 1, 2, 3 is the principal stretch, λ̂i = λ2
i /J 2/3

is the principal deviatoric stretch and J = λ1λ2λ3. Coeffi-
cients ap (p = 1, . . . , N ) are generalized moduli, K is the
bulk modulus, and αp (p = 1, . . . , N ) and m are exponents
that can be calibrated from results of the MD simulations.

The two terms in the energy function in Eq. (10) are related
to the deviatoric and volumetric parts of deformation, respec-
tively. This partitioning is appropriate for modeling incom-
pressible or nearly incompressible behavior, a characteristic
of glassy PS deformation, as discussed by Gilmour et al. [48].
The principal components of Cauchy stress is deduced from
the energy function in Eq. (10) as:

σi = λi

J

∂W

∂λi

= 2

J

N∑

p=1

ap

(
�

λ
αp
i − 1

3

3∑

r=1

�

λ
αp
r

)
+ K

m J
(1 − J−m) (11)

The elasticity tensor for this model is given in Appendix B.
For all three loading types described in Sect. 2.3, the three
principal stretch directions are always in the x, y, z coordi-
nates. Thus the principal stretches and the principal stress
components are λi and σi i , respectively, where i = x, y, z
(no summation).

Utilizing the stretch constraints λx = λy = 1 for loading
type 1, the stress–strain relation in Eq. (11) can be represented
by the σzz − λz relation as:

σzz = 4

3λz

N∑

p=1

ap

(
λ

4αp/3
z − λ

−2αp/3
z

)

+ K

mλz
(1 − λ−m

z ) (12)

For loading type 2, the stresses σxx = σyy ≈ 0, the corre-
sponding relation is:

σzz = 2

J

N∑

p=1

ap

(
(λz/J 1/3)2αp −

(
λz/J 1/3

)−αp
)

(13)

On the other hand, for loading type 3 for which, λx = λy =
λz , the relation is:

σzz = K

mλ3
z
(1 − λ−3m

z ) (14)

Size dependence of the hyperelastic constitutive model is
assumed for polymeric thin films. In this representation, the
energy function in Eq. (10) is assumed to be an explicit func-
tion of the film thickness H , a parameter that is deduced
from the thin film MD simulations. To explore the thickness
dependence of the calibrated parameters in the energy func-
tion, the number of terms in the series N and the exponents
are fixed for different specimens. Only the generalized mod-
uli are calibrated using the following steps.

123



www.manaraa.com

Comput Mech (2012) 50:169–184 175

i. The bulk modulus K is calibrated according to Eq. (14)
from the σzz − ezz curves of loading type 3.

ii. The generalized moduli related to the deviatoric defor-
mation parameters ap, (p = 1, . . . , N ) in Eq. (13) are
calibrated from the σzz − ezz curves for loading type
2. In this phase, only the elastic part of the curves is
fitted. The elastic range is determined from the yield
point near the onset of the zero slope in the stress–strain
curve.

iii. The constitutive model is validated by comparing the
function of Eq. (12) with the calibrated parameters for
results of MD simulations under loading type 1.

Figures 5a–c show the stress–strain plots for films of different
thicknessesfor the three typesofappliedloadinganddeforma-
tion respectively. Results for the thin films are also compared
with the bulk response in these plots. Unless otherwise spec-
ified, only the magnitudes of respective stresses and strains
are plotted in these figures. For the different loadings consid-
ered the slope of the stress–strain plot decreases with dimin-
ishing film thickness. This signifies considerable reduction in
the material stiffness. The stress responses for the constrained
uniaxial straining of loading type 1 and triaxial straining of
loading type 3 are orders of magnitude larger in comparison
with those for uniaxial straining with lateral applied stresses
for loading type 2. This difference may be attributed to the
large volume change and the associated hydrostatic stresses
for the loadings of type 1 and 3. As seen in Fig. 6, the vol-
ume change in a 22.6 nm thick film is approximately 4 % for
an engineering strain εzz of 30 % for the loading type 2, while
the corresponding volume changes are 30 % for loading 1 and
66 % for loading type 3. These results indicate that the stress
is much larger for volumetric deformation than for deviatoric
deformation for PS. Figure 6 also shows that the volume stops
decreasing after a certain amount of straining for loading type
2, while it decreases continuously for loading type 1. This is
consistent with the change in hydrostatic stress, which ceases
to increase beyond a certain value for loading type 2 but keeps
increasing for loading type 1. Also, yielding restrains further
increase in the deviatoric stress after a threshold strain is
attained for loading type 2. As discussed in the next section,
this explains why the stresses stop increasing with strain for
the loading type 2 in Fig. 5b, while they continuously increase
for loading type 1 in Fig. 5a.

The calibrated parameters are listed in Table 1. Here the
fixed parameter values are chosen from Ref. [49] as N =
3,m = 5 and αp = 0.65, 2.5,−1 respectively for p =
1, 2, 3. The data shows that the bulk modulus K is much
larger than other moduli ap (p = 1, 2, 3). This indicates
that PS has a much stiffer response to volumetric strains in
comparison with deviatoric strains. Thus for the constrained

(a)

(b)

(c)

Fig. 5 Stress–strain plots for simulation specimens of different film
thicknesses as well as for bulk response, under: (a) constrained uniax-
ial straining (loading type 1); (b) uniaxial straining with lateral stresses
(loading type 2); (c) triaxial straining (loading type 3). All deformations
shown are for compression

uniaxial straining of loading type 1, which involves both
deviatoric and dilatation strains, stresses from the bulk defor-
mation dominate over that from the deviatoric component of
deformation.
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Table 1 Bulk modulus K and
parameters ai (i = 1, 2, 3)
calibrated from stress–strain
curves generated from MD
simulations for different
systems

Thickness (nm) Chains×monomers K (GPa) a1 (MPa) a2 (MPa) a3 (MPa)

5.2 5×200 0.134 34.1 1.18 −0.848

7.3 10×200 0.621 103 2.51 −3.20

12.3 20×200 1.55 225 5.28 −6.58

17.3 30×200 2.17 321 7.35 −8.84

22.6 40×200 2.60 396 9.06 −10.4

Bulk 8×320 4.38 754 17.5 −18.6

Fig. 6 Volume change for different film thicknesses and for bulk
behavior under loading types 1–3

3.2.3 Effective plastic yielding in the PS response

Figure 5b shows considerable difference in loading-unload-
ing behavior of PS under uniaxial straining. This difference is
however significantly lower for dilatation dominated defor-
mation cases of loading types 1 and 3, as shown in Fig. 5a
and c. The volumetric part of the deformation is predomi-
nantly elastic, whereas plastic yielding is observed for de-
viatoric deformation of loading type 2. Comparison of the
stress–strain and volume change behavior reveals that the
condition of yielding in Fig. 5b is consistent with the regime
where further volume change ceases in Fig. 6. Plasticity in
the deformation of PS has been reported by Vorselaars et al.
[27]. The yield stress σy in this analysis is determined from
the onset of near-zero slopes in the stress–strain curves of
type 2 loading in Fig. 5b. The stress response from the MD
simulations is found to stabilize into a plateau beyond this
point. The yield point is ascertained by comparing the loading

and unloading curves of bulk for different maximum load-
ing stresses. The yield stress is found to be approximately
100 MPa for the bulk PS specimen, as well as for films of
different thicknesses. The unloading curves are close to the
loading curve if the maximum loading stress is lower than
100 MPa for the bulk specimen. Figure 5b also shows that
the stress remains around 100 MPa after yielding. Thus the
behavior of PS may be assumed to be represented well by a
perfect plasticity model. The corresponding yield condition
is given as:

� = σeq − σy(h, ε̇) = 0 (15)

where σeq =
√

2
3σ ′ : σ ′ is the equivalent stress, σ ′ is the de-

viatoric stress tensor, σy is the yield stress which is a function
of the film thickness and strain rate only. From the above MD
simulation results, σy = 100 MPa for an applied strain rate
ėzz = 108s−1. No significant size dependence is observed
for this behavior. Thus the plastic part of constitutive law is
expressed as

dp = ε̇ pn (16)

where, dp is the plastic deformation rate tensor, n = 3σ ′
2σeq

is

the normalized flow direction and ε̇ p is the equivalent plastic
strain rate in the deformed configuration.

3.2.4 Validation by the constrained uniaxial straining

The constitutive model for general finite deformation of PS
combines the elastic and plastic descriptions in Sects. 3.2.2
and 3.2.4, respectively. Details of derivations are given in the
Appendix C with the overall expressions in Eqs. (C9–C11).
In this section, the simple loading type 1 of constrained uni-
axial straining is used for validating the calibrated constitu-
tive parameters. Combining Eqs. (12) and (15), the σzz − λz

relation is expressed as:
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Fig. 7 Stress–strain plots from the calibrated hyperelastic model (solid
lines) with those from the MD simulation results (discrete points) for
films of different thicknesses and the bulk specimen under loading type 1

σzz =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4
3λz

N∑
p=1

ap

(
λ

4αp/3
z − λ

−2αp/3
z

)
+ K

mλz
(1 − λ−m

z ), ∀ 2
λz

N∑
p=1

ap

(
λ

4αp/3
z − λ

−2αp/3
z

)
≤ σy

2
3σy + K

mλz
(1 − λ−m

z ), ∀ 2
λz

N∑
p=1

ap

(
λ

4αp/3
z − λ

−2αp/3
z

)
> σy

(17)

Figure 7 compares the stress–strain plots by the calibrated
constitutive model with the MD simulation results. The con-
sistency of the compared results validates the robustness of
the size-dependent constitutive model.

3.3 Size dependence of the constitutive parameters

The MD simulation results in Sect. 3.2 exhibit size depen-
dence of the calibrated parameters in the material constitu-
tive law for films of different thicknesses. The distribution of
local material parameters across the film thickness is further
investigated in this section using these results. Since the yield
stress and post-yielding stress in PS do not vary significantly
with film thickness in the MD simulations, size dependence
in this study is restricted to the generalized moduli K and
parameters ai (i = 1, 2, 3) in the hyperelastic model. Due
to ambiguity in the definition of local stresses and strains in
MD for thin film models, it is impossible to directly obtain
the local material law from the local stress–strain response.
Additionally, the film cannot be divided into layers in the
thickness direction to determine the material properties of
each layer due to local diffusion. To alleviate these limita-
tions, the following method is proposed to generate distribu-
tion functions of local properties along the film thickness.

An assumption is made that the free standing films have
symmetric properties about the mid-plane and that the aver-
age property of the film section from the surface to a depth
H/2 corresponds to that of a film of thickness H , consistent

with observations in [4]. Accordingly, the averaged material
parameter for a film of thickness H may be expressed as:

M̄(H) = 2

H

H/2∫

0

M(h)dh (18)

M̄(H) represents the generalized moduli including the bulk
modulusK and parameters ai (i = 1, 2, 3) for a film of thick-
ness H , and M(h) represents the corresponding local val-
ues at a depth h from the surface. The thicknesses of the
computer simulated specimens are given by discrete values
H1, H2, . . . . . . ., Hn; ∀H1 < H2 · · · < Hn with small incre-
ments �Hi = Hi − Hi−1. Equation (18) can be rewritten in
a discrete form as:

M̄(Hm) = 1

Hm

m∑

i=1

M(hi )(Hi − Hi−1) (19)

where h̄i = (Hi + Hi−1)/4. The variation of M(h) can be
determined from M̄(Hi )(i = 1, . . . , n) as:

M(h̄i ) = M̄(Hi )Hi − M̄(Hi−1)Hi−1

Hi − Hi−1
(20)

Figure 8a–d plot the deduced local material parameters as
a function of distance from the free surface for the four
generalized moduli a1, a2, a3 and K , respectively. The fig-
ures also compare the specimen material parameters of dif-
ferent films as a function of film thickness. All results for
the overall material parameters show a similar trend, i.e.
the data converge to their bulk values as the film thickness
increases, or as the distance from surface increases for the
local material parameters. To exhibit this trend clearly, the
local material parameters are plotted as a normalized func-
tion Mnorm = − ln (1 − M/Mbulk) in Fig. 9. Here Mbulk is
the corresponding value for the bulk specimen. The graph
shows nearly linear relations between Mnorm and h. This
indicates that the distribution of the local modulus across the
film thickness follows the relation:

M(h) = Mbulk

(
1 − e−(h−h0)/hτ

)
(21)

where parameter h0 can be thought of as the surface layer
thickness and hτ is a characteristic decay depth of the
surface influence into the film. The calibrated parameters
are listed in Table 2, with h0 approximately 1 nm and hτ
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(a)

(b)

(c)

(d)

Fig. 8 Local and overall material parameters as a function of the dis-
tance from the surface h (or different film thicknesses H) for: (a) a1,
(b) a2, (c) a3, (d) K , respectively

Fig. 9 Normalized local material parameters as a function of the dis-
tance along PS film thickness. Lines are formed by linear fitting of the
computational data

approximately 5 nm. Using Eq. (21), the generalized moduli
for a film of thickness H can be written as:

M̄(H) = Mbulk

[
1 − 2hτ

H
eh0/hτ

(
1 − e−H/2h0

)]
(22)

3.4 Rate dependence of constitutive parameters

Rate effects are observed in the MD simulations of the PS
model and are incorporated in the constitutive law. Differ-
ent values of engineering strain rates ėzz from 1 × 106 to
1×109s−1 are applied to the MD model of PS for simulating
the overall deformation patterns. MD simulations for lower
strain rate values are very time consuming. It takes ∼6,000
CPU hours on an IBM Cluster 1350, dual socket, dual core
2.6 GHz Opterons to simulate bulk deformation of a molec-
ular specimen to an engineering strain of 0.3 under a strain
rate of 1×106s−1 with a time step of 4fs. Consequently, sim-
ulations for exploring rate effects are carried out with a single
bulk specimen. Figure 10a and b show the stress–strain plots
for the uniaxial straining with lateral 1 atmosphere pressure
in loading type 2, and triaxial straining of loading type 3,
respectively. In Fig. 10a, the rate effect is very significant
with a larger stress response for a higher strain rate. How-
ever, for loading type 3, the stress–strain plots do not exhibit
any rate dependence. These results indicate that rate effect
is important for the deviatoric component of deformation,
while the volumetric part is relatively rate independent.

Figure 10a demonstrates that the constitutive parameters
that are dependent on the strain rate ėzz include the general-
ized moduli related to deviatoric deformation parameters ap,

(p = 1, 2, 3) and the yield stress σy. Parameters ap can be
calibrated in accordance with Eq. (13) from the elastic part
of the stress–strain curves in Fig. 10a. The yield stress σy, on
the other hand, can be determined from the onset of near-zero
slopes in those curves. The calibrated constitutive parameters
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Table 2 Calibrated parameters for the distribution of local moduli

Modulus hτ (nm) h0 (nm) R2 Value for
least square
minimization

a1 4.71 1.10 0.998

a2 4.98 1.07 0.998

a3 4.96 0.38 0.967

K 3.51 1.14 0.995

(a)

(b)

Fig. 10 Stress–strain plots for: (a) uniaxial straining of loading type 2
with lateral 1 atmosphere pressure, and (b) triaxial straining of loading
type 3 under different strain rates, for the bulk specimen

are plotted as a function of the engineering strain rate ėzz in
Fig. 11. As can be seen, the data points for each constitutive
parameter are almost linear in the log-log plot. This indi-
cates a power law dependence of the constitutive parameters
on strain rate, expressed as:

M = M0ėm
zz (23)

where M represents the respective constitutive parameters
ap, (p = 1, 2, 3) and σy,M0 is a constant with the same unit
as M , m is the index of the power function dependence. m

Fig. 11 Constitutive parameters as a function of the engineering strain
rate for PS bulk specimen on a log–log scale. The lines are generated
from linear fitting. The symbols in the fast rate region are calibrated
from MD simulation results while those in the slow rate region are from
experiments in [50]. Black and grey colors correspond to two measuring
methods

and M0 are determined from the slope and interception of the
linear fit for each constitutive parameter in Fig. 11, as listed
in Table 3. The calibrated constitutive parameters from the
experiments in [50] are also compared in Fig. 11. It is seen
that the experimental data lie near the linear fitted lines for
the generalized moduli ap, (p = 1, 2, 3). This supports the
ability of Eq. (23) in predicting the rate dependence of consti-
tutive parameters across a large range of strain rates. For the
yield stress σy, however, the calibrated function of Eq. (23)
from simulation results is not able to predict the experimen-
tal data well. The rate dependence law Eq. (23) is deduced
from MD results with strain rates ėzz in the range 1 × 106

to 1 × 109 s−1, and is only valid for a certain range of strain
rates. It should be noted that it is not applicable when the
strain rate tends to zero because in that case the stress will
also tends to zero. The yield stress discrepancy may point
to the fact that the dominating mechanisms of yield at the
experimental strain rates are different from those manifested
in the MD simulation strain rates.

In the MD simulations for loading type 2, ėzz is not much

different from the equivalent strain rate ε̇ =
√

2
3 d : d. Thus

Eq. (23) may be written in a more generalized form as

Table 3 Calibrated constants for power law rate dependence for bulk
PS

M M0 (MPa) m R2 value for least
square minimization

a1 368 0.039 0.960

a2 4.53 0.077 0.919

a3 4.52 0.077 0.995

σy 3.15 0.190 0.986
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M(ε̇) = M0ε̇
m (24)

3.5 Summary of size and rate dependence of constitutive
parameters

The proposed constitutive model requires determination of
five constitutive parameters in this work. They include the
generalized moduli related to deviatoric deformation ap , (p =
1, 2, 3), the bulk modulus K , and the yield stress σy. It has
been concluded that K is only size dependent, σy is rate
dependent and ap are both size and rate dependent. Combin-
ing Eqs. (21) and (24) yields a size and rate dependent form
for each constitutive parameter as

ap(h, ε̇) = ap0ε̇
m

(
1 − e−(h−h0)/hτ

)
, (p = 1, 2, 3) (25a)

K (h, ε̇) = K0

(
1 − e−(h−h0)/hτ

)
(25b)

σy(h, ε̇) = σy0ε̇
m (25c)

The parameter values are given in Tables 2 and 3. The size
and rate dependent constitutive law is well established in this
manner.

4 Discussions on size dependent behavior

MD simulation results show strong evidence of size depen-
dence in the stress–strain relations of PS thin films. This paper
develops size and rate dependent constitutive laws for PS thin
films of varying thicknesses. The change in the local density
distribution of molecular ensembles in MD simulations can
also provide insight into the size dependence, as shown in
Figs. 12 and 13. These figures plot the local density profile
across the thickness at zero strain and at an engineering strain
of 0.3 for thin films under constrained uniaxial straining load.
They also compare the responses of the thin films and the
bulk. In Fig. 12, the local density does not change much in
the core region for different films, but reduces sharply near
the surface. With deformation, the local density increases
in the core region for the thicker films, but remains nearly
unchanged for the thinner films as shown in Fig. 13. From
the density distribution profile, the effective film thickness
may be defined as the distance between the two positions,
for which the local density corresponds to the median value
of those at the core region and the outermost surface. An
alternative way to define the effective thickness is to calcu-
late the distance between the two van der Waals surfaces. The
position of the van der Waals surface profile is calculated as
the averaged z-coordinate location in a fine resolution grid
(∼3 Å in this study) on that surface. Figure 14 plots the effec-
tive thicknesses according to the two definitions, as well as
the wall distance during deformation. All values are normal-
ized with respect to the initial wall distance for each film.

Fig. 12 Local density distribution across the thickness in stress-free
state for films of different thicknesses, compared with the bulk speci-
men

Fig. 13 Local density distribution across the thickness at stretch of
λz = 0.7 under constrained uniaxial straining for films of different
thicknesses, compared with the bulk specimen

The effective thicknesses according to the two definitions do
not differ too much. Figure 14 also shows that the effective
thickness changes much less for the thinner film. Figure 15
compares the normalized effective thickness defined by van
der Waals surfaces for films of different thicknesses before
and after uniaxial straining. Also compared is the roughness
of the film surface. This is calculated as the standard devia-
tion of the z coordinates over the grid on the van der Waals
surfaces. It shows that the relative difference between the
effective thickness and thickness from the wall distance is
larger for the thinner film.

These results reveal that the PS thin films may be con-
sidered as a laminate of relatively softer surface layers and
a harder core region. Deformation is more localized to the
surface layer for thinner films. The thickness of the surface
layer can be measured from the region where the local den-
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Fig. 14 Change of the effective thickness (normalized by the initial
wall distance) under uniaxial straining for films of different thicknesses.
Dotted line corresponds to the normalized wall distance

sity deviates from the core, as shown in Fig. 12, or reflected
by the variance of the surface profile, as shown in Fig. 15.
This is of order of magnitude of 1 nm, consistent with h0 in
Table 2. The width of the surface layer is not much different
for different film thicknesses. It is even larger for the thinner
films, rendering a larger percentage of the surface layer for
the thinner film. This observation helps explain why thinner
films have a lower density and stiffness. Indeed, if only the
core region is considered by plotting the stress versus the
relative change of density of the core region under uniaxial
straining, the size dependent behavior disappears, as shown
in Fig. 16. This result provides evidence that size dependence
evolves from the effects at the film surface. With a smaller
density near the surface, the free volume is larger, and the
atomic motion is less constrained. Figure 17 shows that the
mean-squared displacement (MSD) is larger for the thinner
film. This observation has also been reported in the literature
[51]. Figure 18 shows a higher MSD near the film surface.

5 Conclusions

The mechanical properties of PS thin films are investigated
by the MD simulations in this paper. The simulations not
only show the size and rate dependent properties of these
films but also reveal some insights for the size dependence
from an atomic viewpoint. A size-dependent and rate-depen-
dent continuum scale constitutive law is established based
on these simulations. The model establishes rate and size
dependent parameters in a hyperelastic constitutive frame-
work. Post yield behavior is found to be essentially per-
fectly plastic with a rate dependent yield strength. Continuum
simulations can be carried out on a large scale for better
understanding the experiments such as nanoindentation and
nanoparticle embedding on polymer thin films that are used

Fig. 15 Distance between the van der Waals surfaces normalized by
wall distance (square markers), and the standard deviation of the sur-
face (triangle markers) versus the film thickness calculated from wall
distance. Solid and hollow markers correspond to situations before and
after uniaxial, straining respectively

Fig. 16 Stress as a function of relative density change at the core region
calculated as ρinitial/ρ under constrained uniaxial straining

in renewable energy applications for generation, transmis-
sion and storage of energy.
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Appendix A

Detailed derivations for the expression of D̄ep in Sect. 3.2.1
are given as follows. From the yield condition�(T̄, C̄e, ξ̄ ) =
0 and ˙̄ξα = ˙̄ε p Hα

(
T̄, C̄e, ξ̄

)
, α = 1, 2, . . . , n, the consis-

tency condition can be written as

∂�

∂T̄
: ˙̄T + 2

∂�

∂C̄e
: ˙̄Ee + ˙̄ε p

∑

α

∂�

∂ξ̄α
Hα = 0 (A1)
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(a)

(b)

Fig. 17 (a) MSD for NVT simulations of 800 ps for films of different
thicknesses and the bulk specimen; (b) distribution of MSD across the
thickness for films of different thicknesses compared with the bulk

Noting that

˙̄Ee = D̄e = D̄ − D̄p (A2)

and utilizing Eqs. (6–7), ˙̄ε p can be obtained from Eq. (A1)
as

˙̄ε p =
(
∂�

∂T̄
: D̄e + 2 ∂�

∂C̄e

)
: D̄

(
∂�

∂T̄
: D̄e + 2 ∂�

∂C̄e

)
: ∂�
∂T̄

− ∑
α

∂�

∂ξ̄α
Hα

(A3)

Substituting Eq. (A3) into Eq. (7) and Eq. (7) into Eq. (6),
and noting Eq. (A2), the elastic–plastic tangent tensor is
obtained as

D̄ep = D̄e −
(
∂�

∂T̄
: D̄e

) (
∂�

∂T̄
: D̄e + 2 ∂�

∂C̄e

)

(
∂�

∂T̄
: D̄e + 2 ∂�

∂C̄e

)
: ∂�
∂T̄

− ∑
α

∂�

∂ξ̄α
Hα

(A4)

Pushing forward Eq. (8) into the deformed configuration with
the assumption that J e = J , yields the relation

τOldr(e) = Dep : d, (A5)

where τOldr(e) = τ̇ − le · τ − τ · leT is the Oldroyd deriv-

ative of τ , le = Ḟe · −1
Fe is the elastic velocity gradient, d =(−T

Fe
−T
Fe

)
∗∗ ˙̄E,Dep = (FeFeFeFe)

∗∗∗∗
D̄ep.

Appendix B

The strain energy for the Ogden hyperelastic model adopted
in this paper can be rewritten as

W = Ŵ (λ̂i )+ h(J e), (B1)

where Ŵ (λ̂i ) =
N∑

p=1

ap
αp

(
3∑

i=1
λ̂
αp
i − 3

)
and h(J e) = K

m2

(
m ln J e + (J e)−m − 1

)
. Summation convention does not

apply in this and the subsequent equations. Using Eqs. (5–6),
the expressions for the second P–K stress T̄ and the elasticity
tensor D̄e in the intermediate configuration can be incarnated
as (see [46]).

T̄ = (J e)−2/3T̂ + f (λ̂i )
−1

C̄e +h′ J e
−1

C̄e, (B2)

where T̂ = 2
3∑

i=1
Ŵ,i N

i
N
i

and N
i

is the eigen-direction of C̄e,

f (λ̂i ) = − 2
3

3∑
i=1

λ̂i Ŵ,i , Ŵ,i =
N∑

p=1
apλ̂

αp−1
i .

D̄e = (J e)−2/3DT̂ − (h′ J e + f (λ̂i ))P̄

+(h′ J e + h′′(J e)2)
−1

C̄e
−1

C̄e

−2

3
(J e)−4/3T̂

−1

C̄e +2(J e)−4/3
−1

Ĉe dev(M), (B3)

where DT̂ = ∂T̂
∂C̄e , P̄i jkl =

−1

C̄e
ik

−1

C̄e
jl +

−1

C̄e
il

−1

C̄e
jk , M = ∂ f (λ̂i )

∂Ĉe
=

− 4
3

3∑
i=1

N∑
p=1

a2
pλ̂
αp−1
i N

i
N
i

, dev(M) = M − 1
3

(
M : C̄e

) −1

C̄e.

Pushing forward Eq. (B3) into the deformed configuration
yields

(J eσ )Oldr(e) = J eσ̇ + J eσ trde − le · (J eσ )

−(J eσ ) · leT = De : de (B4)

De = (FeFeFeFe)
∗∗∗∗

D̄e is the elasticity tensor in the deformed

configuration, de =
(−T

Fe
−T
Fe

)
∗∗ ˙̄Ee = sym(le) is the elastic

deformation rate tensor, (J eσ )Oldr(e) = (J eσ )·−le ·(J eσ )−
(J eσ ) · leT is elastic Oldroyd derivative of J eσ . Assuming
J e = J , Eq. (B4) can be transformed into

∇
σ (e) =

(
1

J
De + Gσ − σ1

)
: de, (B5)
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where
∇

σ (e) = σ̇ − we · σ + σ · we is the elastic Jaumann
derivative of σ and we = le − de is the elastic spin rate,
Gσi jkl = 1

2

(
σikδ jl + σilδ jk + σ jkδil + σ jlδik

)
.

Appendix C

The constitutive law for a perfect plastic model, adopted in
this paper, is conceived as follows. To determine the plastic
flow direction in Eq. (7), the expression of σeq in Eq. (15) is
transformed as

σeq = 1

J e

[
3

2
tr

(
C̄e · T̄∗ · C̄e · T̄∗)

]1/2

, (C1)

where T̄∗ = T̄ − 1
3 (T̄ : C̄e)

−1

C̄e. Taking the derivative of
Eq. (C1) and assuming J e = J results in the relation

J 2σeqdσeq = 3

2
[(C̄e · T̄∗ · C̄e) : dT̄∗

+(T̄∗ · C̄e · T̄∗) : dC̄e] − Jσeq
2dJ (C2)

Substituting dT̄∗ = dT̄ − 1
3 d(T̄ : C̄e)

−1

C̄e − 1
3 (T̄ : C̄e)d

−1

C̄e

into Eq. (C2) and noting that d
−1

C̄e = −
−1

C̄e ·dC̄e ·
−1

C̄e and
T̄∗ : C̄e = 0, one obtains,

dσeq = 3

2J 2σeq
(C̄e · T̄∗ · C̄e):dT̄ + 1

2J 2σeq
[(T̄ : C̄e)T̄∗

+3T̄∗ · C̄e · T̄∗]:dC̄e − σeq

J
dJ (C3)

From Eq. (7), Eq. (15) and Eq. (C3), the rate of plastic
deformation is obtained as

D̄p = ˙̄Ep = ˙̄ε p ∂σeq

∂T̄
= ˙̄ε p 3

2J 2σeq
C̄e · T̄∗ · C̄e (C4)

Pushing forward into the deformed configuration yields

dp =
(

−T
Fe

−T
Fe

)
∗∗D̄p = ε̇ pn, (C5)

where n = 3σ ′
2σeq

is the normalized flow direction, ε̇ p = ˙̄ε p/J

is the equivalent plastic strain rate and ε̇ p = ( 2
3 dp : dp

)1/2
.

ε̇ p can be determined from the consistency condition. For the
perfect plastic model, Eq. (A1) is expressed as

σyσ̇y = 3

2
σ ′ : σ̇ ′ = 3

2
σ ′ : σ̇ = 0 (C6)

Utilizing Eq. (B4) and noting thatσ ′ : (we · σ − σ · we) =
0 in Eq. (C6), leads to

σ ′ :
(

1

J
De + Gσ − σ1

)
: de = 0 (C7)

Since de = d − dp, substituting Eq. (C5) into Eq. (C7)
yields

ε̇ p = n : ( 1
J e De + Gσ − σ1

) : d

n : ( 1
J e De + Gσ − σ1

) : n
(C8)

Substituting Eq. (C8) and Eq. (C5) back into Eq. (B5) with
de = d − dp, the final constitutive law is expressed as

∇
σ (e) = Dep : d, (C9)

where

Dep =
(

1

J
De + Gσ − σ1

)

−
[( 1

J De + Gσ − σ1
) : n

] [
n : ( 1

J De + Gσ − σ1
)]

n : ( 1
J De + Gσ − σ1

) : n
(C10)

With the assumption of wp = 0 [41,52], Eq. (C9) can be
further simplified as

∇
σ = Dep : d, (C11)

where
∇
σ = σ̇ − w · σ + σ · w is the Jaumann derivative of

σ .

References

1. Yang Y, Liu D, Xie Y, Lee LJ, Tomasko DL (2007) Low-tem-
perature fusion of polymeric nanostructures using carbon dioxide.
Adv Mater 19:251–254

2. Ellison CJ, Torkelson JM (2003) The distribution of glass-transi-
tion temperatures in nanoscopically confined glass formers. Nat
Mater 2:695–700

3. Fakhraai Z, Forrest JA (2008) Measuring the surface dynamics of
glassy polymers. Science 319:600–604

4. Forrest JA (2002) A decade of dynamics in thin films of polysty-
rene: where are we now. Eur Phys J E 8:261–266

5. Sharp JS, Teichroeb JH, Forrest JA (2004) The properties of free
polymer surfaces and their influence on the glass transition tem-
perature of thin polystyrene films. Eur Phys J E 15:473–487

6. Kim JH, Jang J, Zin WC (2001) Thickness dependence of the glass
transition temperature in thin polymer films. Langmuir 17:2703–
2710

7. Priestley RD, Ellison CJ, Broadbelt LJ (2005) Structural relaxation
of polymer glasses at surfaces, interfaces, and in between. Science
309:456–459

8. Sharp JS, Forrest JA (2003) Free surfaces cause reductions in the
glass transition temperature of thin polystyrene films. Phys Rev
Lett 91:235701

9. Miyake K, Satomi N, Sasaki S (2006) Elastic modulus of polysty-
rene film from near surface to bulk measured by nanoindentation
using atomic force microscopy. Appl Phys Lett 89:31925

10. Torres JM, Stafford CM, Vogt BD (2009) Elastic modulus of amor-
phous polymer thin films: relationship to the glass transition tem-
perature. ACS Nano 3:2677–2685

11. Bohme TR, de Pablo JJ (2002) Evidence for size-dependent
mechanical properties from simulations of nanoscopic polymeric
structures. J Chem Phys 116:9939–9951

123



www.manaraa.com

184 Comput Mech (2012) 50:169–184

12. Yoshimoto K, Jain TS, Nealey PF, De PJ (2005) Local dynamic
mechanical properties in model free-standing polymer thin films.
J Chem Phys 122:144712

13. Tweedie CA, Constantinides G, Lehman KE, Brill DL, Blackman
GS, Van Vliet KJ (2007) Enhanced stiffness of amorphous poly-
mer surfaces under confinement of localized contact loads. Adv
Mater 19:2540–2546

14. Vanlandingham MR, Villarrubia JS, Guthrie WF, Meyers
GF (2001) Nanoindentation of polymers: an overview. Macromol
Symp 167:15–44

15. Zhou J, Komvopoulos K (2006) Surface and interface viscoelastic
behaviors of thin polymer films investigated by nanoindentation.
J Appl Phys 100:114329

16. Saha R, Nix WD (2002) Effects of the substrate on the determina-
tion of thin film mechanical properties by nanoindentation. Acta
Mater 50:23–38

17. Erichsen J, Kanzow J, Schurmann U, Dolgner K, Gunther-Schade
K, Strunskus T, Zaporojtchenko V, Faupel F (2004) Investigation
of the surface glass transition temperature by embedding of noble
metal nanoclusters into mono-dispersed polystyrenes. Macromol-
ecules 37:1831–1838

18. Teichroeb JH, Forrest JA (2003) Direct imaging of nanoparticle
embedding to probe viscoelasticity of polymer surfaces. Phys Rev
Lett 91:16101–16104

19. Yang J, Liu C, Yang Y, Zhu B, Lee LJ, Chen H, Jean
YC (2009) Analysis of polystyrene surface properties on thin film
bonding under carbon dioxide pressure using nanoparticle embed-
ding technique. J Polym Sci B 47:1535–1542

20. Hutcheson SA, McKenna GB (2007) Comment on ‘The properties
of free polymer surfaces and their influence on the glass transition
temperature of thin polystyrene films’ by J.S. Sharp, J.H. Teichroeb
and J.A. Forrest. Eur Phys J E 22:281–286

21. Sharp JS, Forrest JA, Fakhraai Z, Khomenko M, Teichroeb JH,
Dalnoki-Veress K (2007) Reply to comment on ‘The properties
of free polymer surfaces and their effect upon the glass transition
temperature of thin polystyrene films’ by S.A. Hutcheson and G.B.
McKenna. Eur Phys J E 22:287–291

22. Stafford CM, Vogt BD, Harrison C, Julthongpiput D, Huang
R (2006) Elastic moduli of ultrathin amorphous polymer films.
Macromolecules 39:5095–5099

23. Rauchs G, Bardon J, Georges D (2010) Identification of the mate-
rial parameters of a viscous hyperelastic constitutive law from
spherical indentation tests of rubber and validation by tensile tests.
Mech Mater 42:961–973

24. Chen Y (2009) Reformulation of microscopic balance equations
for multiscale materials modeling. J Chem Phys 130:134706

25. Lyulin AV, Balabaev NK, Mazo MA, Michels MA (2004) Molec-
ular dynamics simulation of uniaxial deformation of glassy amor-
phous atactic polystyrene. Macromolecules 37:8785–8793

26. Lyulin AV, Michels MA (2007) Time scales and mechanisms of
relaxation in the energy landscape of polymer glass under defor-
mation: direct atomistic modeling. Phys Rev Lett 99:85504

27. Vorselaars B, Lyulin AV, Michels MAJ (2009) Deforming glassy
polystyrene: influence of pressure, thermal history, and deforma-
tion mode on yielding and hardening. J Chem Phys 130:74905

28. Simoes R, Cunha AM, Brostow W (2006) Molecular dynamics
simulations of polymer viscoelasticity: effect of the loading con-
ditions and creep behaviour. Model Simul Mater Sci Eng 14:157

29. van Workum K, de Pablo JJ (2003) Computer simulation of the
mechanical properties of amorphous polymer nanostructures. Nano
Lett 3:1405–1410

30. Alleman C, Srivastava A, Ghosh S (2011) Molecular dynamics
simulations of carbon dioxide assisted bonding of polystyrene thin
films. J Polym Sci B 49:1183–1194

31. Srivastava A, Alleman C, Ghosh S, Lee LJ (2010) Molecular
dynamics simulation based evaluation of glass transition temper-

atures of polystyrene in the presence of carbon dioxide. Model
Simul Mater Sci Eng 18:65003

32. Srivastava A, Ghosh S (2010) evaluating the glass transition tem-
perature of polystyrene by an experimentally validated molecular
dynamics model. Int J Multiscale Comput Eng 8:535–547

33. Smith SW, Hall CK, Freeman BD (1997) Molecular dynamics for
polymeric fluids using discontinuous potentials. J Comput Phys
134:16–30

34. Harmandaris VA, Adhikari NP, van der Vget VFA, Kremer
K (2006) Hierarchical modeling of polystyrene: from atomistic to
coarse-grained simulations. Macromolecules 39:6708–6719

35. Wick CD, Martin MG, Siepmann JI (2000) Transferable poten-
tials for phase equilibria. 4. united-atom description of linear and
branched alkenes and alkyl benzenes. J Phys Chem B 104:8008–
8016

36. Han J, Boyd RH (1996) Molecular packing and small-penetrant
diffusion in polystyrene: a molecular dynamics simulation study.
Polymer 37:1797–1804

37. Subramaniyan AK, Sun CT (2008) Continuum interpretation of vi-
rial stress in molecular simulations. Int J Solids Struct 45:4340–
4346

38. Zimmerman JA, Webb EB, Hoyt JJ, Jones RE, Klein PA (2004)
Calculation of stress in atomistic simulation. Model Simul Mater
Sci Eng 12:S319–S332

39. Zhou M (2003) A new look at the atomic level virial stress: on con-
tinuum-molecular system equivalence. Proc R Soc A 459:2347–
2392

40. Mark JE (1999) Polymer data handbook. Oxford University Press,
New York

41. Moran B, Ortiz M, Shih CF (1990) Formulation of implicit finite-
element methods for multiplicative finite deformation plasticity.
Int J Numer Methods Eng 29:483–514

42. Beda T (2007) Modeling hyperelastic behavior of rubber: a novel
invariant-based and a review of constitutive models. J Polym Sci
B 45:1713–1732

43. Hartmann S (2001) Parameter estimation of hyperelasticity rela-
tions of generalized polynomial-type with constraint conditions.
Int J Solids Struct 38:7999–8018

44. Arruda EM, Boyce MC (1993) A three-dimensional constitutive
model for the large stretch behavior of rubber elastic materials.
J Mech Phys Solids 41:389–412

45. Ogden RW (1972) Large deformation isotropic elasticity—on the
correlation of theory and experiment for incompressible rubberlike
solids. Proc R Soc A 326:565–584

46. Gendy AS, Saleeb AF (2000) Nonlinear material parameter esti-
mation for characterizing hyper elastic large strain models. Comput
Mech 25:66–77

47. Saleeb AF, Chang TYP, Arnold SM (1992) On the development of
explicit robust schemes for implementation of a class of hyperelas-
tic models in large-strain analysis of rubbers. Int J Numer Methods
Eng 33:1237–1249

48. Gilmour IW, Trainor A, Haward RN (1979) Elastic moduli of
glassy polymers at low strains. J Appl Polym Sci 23:3129–3138

49. Bower AF (2009) Applied mechanics of solids. CRC Press, Boca
Raton

50. Loggi LT (1998) An experimental characterization of the tensile
behavior of polystyrene. Dissertation, Rochester Institute of Tech-
nology

51. Baljon AR, Williams S, Balabaev NK, Paans F, Hudzinskyy D,
Lyulin AV (2010) Simulated glass transition in free-standing thin
polystyrene films. J Polym Sci B 48:1160–1167

52. Agah-Tehrani A, Lee EH, Mallett RL, Onat ET (1987) The theory
of elastic–plastic deformation at finite strain with induced anisot-
ropy modeled as combined isotropic-kinematic hardening. J Mech
Phys Solids 35:519–539

123



www.manaraa.com

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.


	Molecular dynamics simulation based size and rate dependent constitutive model of polystyrene thin films
	Abstract
	1 Introduction
	2 Molecular dynamics model of the polystyrene system
	2.1 Inter-atomic potentials
	2.2 Generating computational specimens
	2.3 Boundary conditions and deformation simulations

	3 Calibrating size and rate-dependent constitutive parameters
	3.1 Validation studies for a bulk specimen
	3.2 Constitutive parameters
	3.2.1 A framework of elastic--plastic constitutive law for finite deformation
	3.2.2 Hyperelastic constitutive law for the polymeric thin film
	3.2.3 Effective plastic yielding in the PS response
	3.2.4 Validation by the constrained uniaxial straining

	3.3 Size dependence of the constitutive parameters
	3.4 Rate dependence of constitutive parameters
	3.5 Summary of size and rate dependence of constitutive parameters

	4 Discussions on size dependent behavior
	5 Conclusions
	Acknowledgments
	Appendix A
	Appendix B
	Appendix C
	References


